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Background: Malware Analysis

• Static analysis

• Decompile program to check risky patterns

• Analyze all possible code path, relatively fast

• Cannot handle code obfuscation techniques

• Sandbox-based analysis

• Monitor runtime behaviors at various level

• The ability to handle code obfuscation

• Widely used in cyber security teams
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Background: Anti-Sandbox Techniques

• Evasion techniques to circumvent sandbox

• Malware alters its behaviors when detecting sandbox environment 

• Include detect indicators, such as system setting[1], analysis 

instrumentation module or drivers[2], user-like mouse clicking[3], as 

well as time attacking[4], CPU virtualization[5], etc.

• Evolve from simple environment-specific configuration detection to 

complex user behavior detection
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Background: Anti-Anti-Sandbox

• Multiple mitigation strategies [6] to defeat anti-sandbox

• State modification: modify the execution state at given points to force 

code to take alternative branches

• Multi-platform record & replay: record malware execution information 

and replay execution code from multiple platforms

• Bare metal analysis: directly perform instrument 

analysis on physical machine

• Hide environmental artifacts through hook function

• All strategies try to ensure realistic configuration

for sandbox environment
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Definition: Usage Artifacts Analysis

• Existing strategies are ineffective in countering usage 

artifacts analysis [7] based sandbox evasion

• Usage artifacts analysis

• In real system, normal usage contains various actions like browsing 

website, editing office word, etc. leading to a variety of artifacts

• In sandbox environment, running specific analysis software and 

lacking abundant functions, leading to little artifacts

• Artifacts: files/traces: Temporary Files, DNS, Bookmarks, Cookies, 

Log Entries, etc.  as a results of accumulation normal usage

• Usage artifacts analysis: Identifying usage artifacts generated by 

normal user activities to distinguish sandbox from real system
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Motivation: Defeat Usage Artifacts Analysis

• Tackle the drawback of lacking historical usage artifacts in 

existing sandbox environment

• Deceive malware a real usage environment

• How to tackle?
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Motivation: Defeat Usage Artifacts Analysis

• Two potential solution
• Option 1: Clone real user system

• Directly clone real user system to sandbox

• Privacy violation, artifacts outdating after a period of time

• Option 2: Simulate user behavior 

• Directly simulate user behaviors in sandbox environments

• No privacy, how to ensure realistic of artifacts is a great challenge?
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System Design

• User Behavior Emulator (UBER)

• Apply the predefined user profile to generate realistic user activities

• Step 1: collect user data to abstract user behavior profile

• Step 2: take this profile as input to simulate user behavior

• Step 3: analyze malware on sandbox environment with generated 

artifacts
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System Architecture

• UBER Overview
• Gather raw user data which characterizes user behavior

• Perform statistical and correlation analysis to generate user profile

• Event Generator create events following user profile and executes 

them via the Event Execution, resulting in “real” artifacts.

• Clone to create the malware sandbox analysis environment, keep up-

to-date
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Data Collector

• Gather information to derive user profile
• Record application usage time through tracker software

• Categories application into predefined type

• Collect public data to build typically operation of activity type
• Alexa: most frequently visited websites

• Google Trends: daily trending items
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User Profile Generator

• Statistical analysis of collected information

• Output configuration file defining how to perform user actions

• An brief example of user profile
• Duration: average computer usage time

• Probability, likelihood a user would perform 

specific activities

• Predefined type: usage experience
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Artifact Generation OS

• Typical system artifacts
• Accumulation from normal usage with various actions

• Indicate historical usage

• Existing big difference between sandbox and real system
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Artifact Generation OS

• Event Generator
• Make decision on which events will be performed

• The P & R function takes the configuration file to select the activities 

and the corresponding sub-activities

• The timer ensure the emulation time not exceed limits in configuration 

• Event Execution
• Executing the events based on predefined actions
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Malware Analysis OS

• Malware Sandbox Analysis OS

• Execute malware and gather runtime information

• The emulation software should not be executed on this OS

• Avoid runtime resource competition between emulation and malware

• Reduce the chance of malware identifying sandbox through detecting 

the emulation driver

• Update Scheduler

• Create copy of Artifact Generation OS to sandbox analysis

• Regularly copy to keep the artifacts of malware sandbox up-to-date
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Implementation

• Implement a prototype through python scripts
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Experiment

• Implement automation script with NirSoft1 to collect artifacts

• Collect artifacts from multiple available sandbox systems and 

real user systems

• Artifacts Difference
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Artifacts Sandbox Real Systems Difference

Downloaded Files 0 27 27

Total URLs Visited 3 301 298

Unique Domains 0 55 54

Cookies 0 71 71

Bookmarks 0 310 310

Temporary Internet Files 0 921 44

Bytes Sent 2731035 43007337 40276302

MUI Cache 2 211 209

Userassist Entries 33 62 29

MRU Entries 57 433 376

Registry Size 52521688 73218690 20697002

System Log Entries 774 1715 841

Application Log Entries 293 1290 997
1. https://www.nirsoft.net/



Experiment

• Experiment Platform

• Host System: Ubuntu 18.04 LTS, Intel Xeon(R) E5-2620 CPU @ 

2.40GHz x 12 and 16 GB

• VMs: deploy VirtualBox with 3 vCPUs and 4GB memory

• Measurement Effectiveness

• Baseline: VMs with fresh installed Oses

• Baseline + User Operation: Manually operate cloned VMs as “Real”

• Baseline + UBER: Deploy UBER on these VMs as “Sandbox”
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Experiment

• Measurement
• After one month, the two systems accumulate similar comparable 

amount of artifacts
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Artifacts Baseline Baseline + User Operation Baseline + UBER

Downloaded Files 0 27 34

Total URLs Visited 3 1786 1766

Unique Domains 1 373 354

Cookies 5 31 55

Bookmarks 0 151 164

Temporary Internet Files 19 57 55

Bytes Sent 2124684 5225592 5012932

Active Connections 6 50 46

MUI Cache 14 26 24

Userassist Entries 43 73 74

MRU Entries 17 128 136

Registry Size 87030444 92026650 91356255

System Log Entries 813 845 921

Application Log Entries 694 1124 1208

Realistic 

Artifacts



Discussion & Future work

• UBER is a complementary to existing mitigation solution

• Data Collection

• Malware targets specific individuals or organizations

• Defining the profile of specific individuals

• Software Specific Artifacts

• UBER emulates popular software, lacks artifacts of specific software

• Modify UBER to emulate this software to generate unique artifacts

• Validation of Artifacts

• Check the content of artifacts (e.g., correctness of documents) 

• Plan to integrate fake document generation methods FORGE [8] into 

UBER
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Conclusion

• Perform the study of malware sandbox evasion techniques 

that leverage system artifacts analysis

• Propose UBER, which generate realistic usage artifacts based 

on the predefined user profile

• Implement a prototype, and verify its effectiveness through 

experiments
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Questions!
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