
UBER: Combating Sandbox Evasion
via User Behavior Emulators

Pengbin Feng, Jianhua Sun, Songsong Liu, Kun Sun

Outline

• Background & Motivation

• System Design

• Implementation & Experiment

• Discussion & Future Work

• Conclusion

2

Background: Malware Analysis

• Static analysis

• Decompile program to check risky patterns

• Analyze all possible code path, relatively fast

• Cannot handle code obfuscation techniques

• Sandbox-based analysis

• Monitor runtime behaviors at various level

• The ability to handle code obfuscation

• Widely used in cyber security teams

3

Code

Obfuscation

Payload

Encryption

Packer

Background: Anti-Sandbox Techniques

• Evasion techniques to circumvent sandbox

• Malware alters its behaviors when detecting sandbox environment

• Include detect indicators, such as system setting[1], analysis

instrumentation module or drivers[2], user-like mouse clicking[3], as

well as time attacking[4], CPU virtualization[5], etc.

• Evolve from simple environment-specific configuration detection to

complex user behavior detection

4

Background: Anti-Anti-Sandbox

• Multiple mitigation strategies [6] to defeat anti-sandbox

• State modification: modify the execution state at given points to force

code to take alternative branches

• Multi-platform record & replay: record malware execution information

and replay execution code from multiple platforms

• Bare metal analysis: directly perform instrument

analysis on physical machine

• Hide environmental artifacts through hook function

• All strategies try to ensure realistic configuration

for sandbox environment

5

Definition: Usage Artifacts Analysis

• Existing strategies are ineffective in countering usage

artifacts analysis [7] based sandbox evasion

• Usage artifacts analysis

• In real system, normal usage contains various actions like browsing

website, editing office word, etc. leading to a variety of artifacts

• In sandbox environment, running specific analysis software and

lacking abundant functions, leading to little artifacts

• Artifacts: files/traces: Temporary Files, DNS, Bookmarks, Cookies,

Log Entries, etc. as a results of accumulation normal usage

• Usage artifacts analysis: Identifying usage artifacts generated by

normal user activities to distinguish sandbox from real system

6

Motivation: Defeat Usage Artifacts Analysis

• Tackle the drawback of lacking historical usage artifacts in

existing sandbox environment

• Deceive malware a real usage environment

• How to tackle?

7

Motivation: Defeat Usage Artifacts Analysis

• Two potential solution
• Option 1: Clone real user system

• Directly clone real user system to sandbox

• Privacy violation, artifacts outdating after a period of time

• Option 2: Simulate user behavior

• Directly simulate user behaviors in sandbox environments

• No privacy, how to ensure realistic of artifacts is a great challenge?

8

System Design

• User Behavior Emulator (UBER)

• Apply the predefined user profile to generate realistic user activities

• Step 1: collect user data to abstract user behavior profile

• Step 2: take this profile as input to simulate user behavior

• Step 3: analyze malware on sandbox environment with generated

artifacts

9

System Architecture

• UBER Overview
• Gather raw user data which characterizes user behavior

• Perform statistical and correlation analysis to generate user profile

• Event Generator create events following user profile and executes

them via the Event Execution, resulting in “real” artifacts.

• Clone to create the malware sandbox analysis environment, keep up-

to-date

10

Malware Sandbox

Analysis OS

Artifact Generation OS

User Profile

Generator

Configure file

Event

Execution

Event

Generator

Activity X

Activity Y

Activity Z

Data

Collector

Update

Scheduler

Make Clone

Data Collector

• Gather information to derive user profile
• Record application usage time through tracker software

• Categories application into predefined type

• Collect public data to build typically operation of activity type
• Alexa: most frequently visited websites

• Google Trends: daily trending items

11

Malware Sandbox

Analysis OS

Artifact Generation OS

User Profile

Generator

Configure file

Event

Execution

Event

Generator

Activity X

Activity Y

Activity Z

Data

Collector

Update

Scheduler

Make Clone

User Profile Generator

• Statistical analysis of collected information

• Output configuration file defining how to perform user actions

• An brief example of user profile
• Duration: average computer usage time

• Probability, likelihood a user would perform

specific activities

• Predefined type: usage experience

12

system

Web App

Search Mail News ProductivityLeisure …….……

System usage (Start time, Duration)

onTimes: 0800+0100-0100, 210

onTimes: 1300+0030-0030, 270

Activity type of user (Type, Probability)

ActivityTypes: web, 60|app, 40

Malware Sandbox

Analysis OS

Artifact Generation OS

User Profile

Generator

Configure file

Event

Execution

Event

Generator

Activity X

Activity Y

Activity Z

Data

Collector

Update

Scheduler

Make Clone

Artifact Generation OS

• Typical system artifacts
• Accumulation from normal usage with various actions

• Indicate historical usage

• Existing big difference between sandbox and real system

13

File System Downloaded Files

Browser
Total URLs Visited, Unique Domains,

Cookies, Bookmarks, Temporary Internet Files

Network
ARP Entries, DNS Records, Bytes Sent, Active

Connections

Registry
MUI Cache, Userassist Entries, MRU Entries,

Registry Size

System System Log Entries, Application Log Entries

Malware Sandbox

Analysis OS

Artifact Generation OS

User Profile

Generator

Configure file

Event

Execution

Event

Generator

Activity X

Activity Y

Activity Z

Data

Collector

Update

Scheduler

Make Clone

Artifact Generation OS

• Event Generator
• Make decision on which events will be performed

• The P & R function takes the configuration file to select the activities

and the corresponding sub-activities

• The timer ensure the emulation time not exceed limits in configuration

• Event Execution
• Executing the events based on predefined actions

14

Malware Sandbox

Analysis OS

Artifact Generation OS

User Profile

Generator

Configure file

Event

Execution

Event

Generator

Activity X

Activity Y

Activity Z

Data

Collector

Update

Scheduler

Make Clone

Event Execution

Event Generator

Pre-defined User

Actions

Probability &

Randomization

Activities Sub-Activities

Configuration File

Execution Results

events

System Usage

Activity type

Sub-Activity type

Configuration

file
Timer

Malware Analysis OS

• Malware Sandbox Analysis OS

• Execute malware and gather runtime information

• The emulation software should not be executed on this OS

• Avoid runtime resource competition between emulation and malware

• Reduce the chance of malware identifying sandbox through detecting

the emulation driver

• Update Scheduler

• Create copy of Artifact Generation OS to sandbox analysis

• Regularly copy to keep the artifacts of malware sandbox up-to-date

15

Malware Sandbox

Analysis OS

Artifact Generation OS

User Profile

Generator

Configure file

Event

Execution

Event

Generator

Activity X

Activity Y

Activity Z

Data

Collector

Update

Scheduler

Make Clone

Implementation

• Implement a prototype through python scripts

16

python

Sub-Activities

notepad

Sub-Activities

selenium pywin32

pywinauto
Webdriver

Browser

winreg

Windows OS

Installed

Application List

Probability &

Randomization

Configure file

win32com

Office

Software
Searching News

Mail Selected Application

Application

Alexa
Google

Trends

• Use python module Selenium,

Pywin32 and Pywinauto to

control the browser and

application

• Recruit several volunteers to

generalize user profile

• Perform UI interaction in

human-like speed

• Perform activities in human-like

habits

• Manually parse commonly

accessed websites and GUI

elements from popular

applications

Experiment

• Implement automation script with NirSoft1 to collect artifacts

• Collect artifacts from multiple available sandbox systems and

real user systems

• Artifacts Difference

17

Artifacts Sandbox Real Systems Difference

Downloaded Files 0 27 27

Total URLs Visited 3 301 298

Unique Domains 0 55 54

Cookies 0 71 71

Bookmarks 0 310 310

Temporary Internet Files 0 921 44

Bytes Sent 2731035 43007337 40276302

MUI Cache 2 211 209

Userassist Entries 33 62 29

MRU Entries 57 433 376

Registry Size 52521688 73218690 20697002

System Log Entries 774 1715 841

Application Log Entries 293 1290 997
1. https://www.nirsoft.net/

Experiment

• Experiment Platform

• Host System: Ubuntu 18.04 LTS, Intel Xeon(R) E5-2620 CPU @

2.40GHz x 12 and 16 GB

• VMs: deploy VirtualBox with 3 vCPUs and 4GB memory

• Measurement Effectiveness

• Baseline: VMs with fresh installed Oses

• Baseline + User Operation: Manually operate cloned VMs as “Real”

• Baseline + UBER: Deploy UBER on these VMs as “Sandbox”

18

Experiment

• Measurement
• After one month, the two systems accumulate similar comparable

amount of artifacts

19

Artifacts Baseline Baseline + User Operation Baseline + UBER

Downloaded Files 0 27 34

Total URLs Visited 3 1786 1766

Unique Domains 1 373 354

Cookies 5 31 55

Bookmarks 0 151 164

Temporary Internet Files 19 57 55

Bytes Sent 2124684 5225592 5012932

Active Connections 6 50 46

MUI Cache 14 26 24

Userassist Entries 43 73 74

MRU Entries 17 128 136

Registry Size 87030444 92026650 91356255

System Log Entries 813 845 921

Application Log Entries 694 1124 1208

Realistic

Artifacts

Discussion & Future work

• UBER is a complementary to existing mitigation solution

• Data Collection

• Malware targets specific individuals or organizations

• Defining the profile of specific individuals

• Software Specific Artifacts

• UBER emulates popular software, lacks artifacts of specific software

• Modify UBER to emulate this software to generate unique artifacts

• Validation of Artifacts

• Check the content of artifacts (e.g., correctness of documents)

• Plan to integrate fake document generation methods FORGE [8] into

UBER
20

Conclusion

• Perform the study of malware sandbox evasion techniques

that leverage system artifacts analysis

• Propose UBER, which generate realistic usage artifacts based

on the predefined user profile

• Implement a prototype, and verify its effectiveness through

experiments

21

Questions!

22

Reference

[1] Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. "Detecting environment-sensitive

malware." International Workshop on Recent Advances in Intrusion Detection. Springer, Berlin, Heidelberg, 2011.

[2] Chen, Xu, et al. "Towards an understanding of anti-virtualization and anti-debugging behavior in modern

malware." 2008 IEEE International Conference on Dependable Systems and Networks With FTCS and DCC

(DSN). IEEE, 2008.

[3] Keragala, Dilshan. "Detecting malware and sandbox evasion techniques." SANS Institute InfoSec Reading

Room 16 (2016).

[4] Brengel, Michael, Michael Backes, and Christian Rossow. "Detecting hardware-assisted virtualization."

International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, Cham,

2016.

[5] Alwabel, Abdulla, et al. "Safe and automated live malware experimentation on public testbeds." 7th Workshop

on Cyber Security Experimentation and Test ({CSET} 14). 2014.

[6] Bulazel, Alexei, and Bülent Yener. "A survey on automated dynamic malware analysis evasion and counter-

evasion: PC, mobile, and web." Proceedings of the 1st Reversing and Offensive-oriented Trends Symposium.

ACM, 2017.

[7] Miramirkhani, Najmeh, et al. "Spotless sandboxes: Evading malware analysis systems using wear-and-tear

artifacts." 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017.

[8] Chakraborty, Tanmoy, et al. "FORGE: A Fake Online Repository Generation Engine for Cyber Deception." IEEE

Transactions on Dependable and Secure Computing (2019).

23

