
1

Shengye Wan, Mingshen Sun, Kun Sun, Ning Zhang, Xu He

December 10th, 2020

RusTEE: Developing Memory-Safe ARM 
TrustZone Applications



OUTLINE
● Introduction

● System Overview

● System Evaluation

● Takeaways

2



INTRODUCTION

3



Mobile Devices Are Not Safe

4

● Mobile devices are facing many different threats

○ Trojans, spyware, ransomware

● We need an unified security solution 

○ Mobile devices are mostly shipped with ARM-based chips



ARM TrustZone Technology

5

Entire normal world is untrusted

It is isolated from secure components
Secure world is trusted



One TA Breaks Entire Samsung TrustZone

6

Attacker-controlled parameters

C-Style pseudo-code of a vulnerable trusted application,

CVE-2018-14491 [1]

[1] Quarkslab. 2019. “Breaking Samsung's ARM TrustZone”. BlackHat USA.

Manipulated dangerous behavior



Motivation: Trusted Applications Are Vulnerable

● Issue-1: TAs are written with memory-corruption bugs 

○ Memory-unsafe languages: C & assembly code

○ Good performance vs. memory-corruption vulnerabilities

● Issue-2: A vulnerable TA threatens entire secure world 

○ Widely exposed system-service APIs

○ user mode -> kernel mode

● Issue-3: A vulnerable TA can get manipulated

○ Cross-world communication

○ Malicious Normal World application can exploit Secure World 

vulnerabilities

7



Security Issues of Trusted Applications 

8

3. cross-world communication

1. memory-corruption 

vulnerabilities

2. system-service APIs



Security Issues of Trusted Applications 

9

3. cross-world communication

1. memory-corruption 

vulnerabilities

2. widely exposed APIs



SYSTEM
OVERVIEW

10



Our Solution: RusTEE

11

● Providing a reliable trusted-application SDK

○ Key idea: building trusted applications in the memory-safe language Rust

● Rust language [3]

○ Reliability: promise the memory and thread safety 

○ Performance: run-time behavior similar to C

○ Productivity: million crates (libraries)

[3] Nicholas D Matsakis and Felix S Klock II. 2014. The rust language. In ACM SIGAda Ada Letters.



Resolving Issue-1: Integrating Rust 

● Supporting standard Rust-safe operations

○ Rust compiler can detect memory-corruption bugs for Rust-safe code

○ Manually connecting the trusted OS’s standard library with Rust

■ We provide supports for Aarch32 and Aarch64 trusted OS

12

● Trusted applications still require C-based libraries

○ System services (e.g., cryptography) and cross-world communication

○ Rust imports C libraries via Foreign Function Interface (unsafe bindings)

■ Rust compiler skips checking on Rust-unsafe

■ Introducing potential threats 



Resolving Issue-2: Binding Unsafe APIs

● Enforcing 6 principles for binding C-based libraries

○ Adapting 4 principles of Rust-SGX [4]

■ Bytes, ContiguousMemory, Sanitizable[T], Handleτ

13

○ Proposing 2 new principles for binding TrustZone-specific APIs

i. Enforcing the serialization of grouped APIs

● API-prepare -> API-encrypt -> API-finalize

ii. Enforcing allocation & release for sensitive data structures

● Example: impl Drop for OperationHandle {}

[4] Wang et al. 2019. “Towards Memory Safe Enclave Programming with Rust-SGX”. CCS.



Resolving Issue-3: Securing Communication

● 4 involved data structures

○ Context, Session, Command, Parameter

● 3 security enhancements

1. Management of all structures’ lifetimes

2. Management of Parameter’s mutability (R/W permission)

3. Enforcing the type-safety of Parameter

14



Resolving Security Issues

15

memory-safe 

applications



SYSTEM
EVALUATION

16



RusTEE Implementation 

● Implementing our prototype based on OP-TEE OS [5]

○ TAs can be developed with all functionalities of OP-TEE

○ Providing normal-world SDK as the complementary component

● Providing 13 examples

○ Cryptography (e.g., AES, HMAC), file storage, big-number calculation, etc.

○ Re-implement all 6 examples of OP-TEE

● Open-source project [6]

○ More than 8000 Lines-of-Code

○ https://github.com/sccommunity/rust-optee-trustzone-sdk

17

[5] Linaro. OPTEE Secure OS. GitHub.

[6] Mesalock Linux. rust-optee-trustzone-sdk. GitHub.

https://github.com/sccommunity/rust-optee-trustzone-sdk
https://github.com/OP-TEE/optee_os
https://github.com/mesalock-linux/rust-optee-trustzone-sdk


RusTEE Evaluation

● RusTEE applications vs. OP-TEE applications

● Overhead

○ Min = 0.27%

○ Max = 3.08%

○ Average ≤ 1%

18



TAKEAWAYS

19



Summary

20

1. We need memory-safe TrustZone Trusted Applications

2. Rust can contribute on building reliable TAs

3. The Trusted OS should interact with TAs carefully

4. TAs should use the data from Normal World carefully



21

Thanks & 
Questions?

Presenter: Shengye Wan
Q&A: Mingshen Sun

December 10th, 2020


