
DESIR: Decoy-Enhanced Seamless IP Randomization
Jianhua Sun, Kun Sun

Department of Computer Science
College of William and Mary

1

Roadmap
● Introduction
● Threat Model
● System Architecture
● Implementation
● Security Analysis
● Performance Evaluation
● Conclusion

2

Roadmap
● Introduction
● Threat Model
● System Architecture
● Implementation
● Security Analysis
● Performance Evaluation
● Conclusion

3

Background
● Network reconnaissance attacks have been effective

due to the static nature of current network and
system configurations

● Existing IP randomization based solutions shift
network attack surface, including:
○ IP and MAC addresses, open ports, network topology

4

Limitations of previous approaches
● Effectiveness of IP randomization is reduced due to

the small number of alive IP addresses at one time
○ Small security entropy

● Existing active connections may be disrupted when
the IP addresses of the servers are changed
○ Negative impact on user experience

5

Contribution Highlights
Solve two major challenges!

● Service Security against malicious users
○ Fortify IP randomization with a large number of decoys

that shuffle their address along with the real servers

● Service Availability to legitimate users
○ Develop a seamless network connection migration

mechanism to keep alive the pre-existing connections

6

Roadmap
● Introduction
● Threat Model
● System Architecture
● Implementation
● Security Analysis
● Performance Evaluation
● Conclusion

7

Threat Model and Assumptions
● Focus on persistent reconnaissance attacks

○ Not consider insiders that deliberately disclose the current server
IP address to attackers

● Adversaries are not in the same subnet with legitimate users
○ Cannot obtain the server IP addresses through packet

eavesdropping
● Secret keys are shared between the legitimate users and the

servers
● The protected network consists of a large number of IP

addresses to accommodate decoy nodes

8

Roadmap
● Introduction
● Threat Model
● System Architecture
● Implementation
● Security Analysis
● Performance Evaluation
● Conclusion

9

System Architecture

10

Randomization Controller
● Decision engine

○ Determine randomization frequency, choose algorithm to
generate new network configurations

● Configuration generator
○ Control overall topology and regenerate new configuration
○ Guarantee there is no interference in IP address assignment

● Migration console
○ Distribute the new configuration to the servers and decoy

subsystem
11

Decoy Bed
● Communication module

○ Receive new configuration settings from the
randomization controller

○ Determines the overall architecture of the decoy
network

● Decoy generator
○ Regenerates the decoy network
○ Flexible to deploy both high-interaction and low-

interaction decoys
12

Migration Module

13

● Connection interception
○ Introduce a pair of internal and external addresses to detach

transport layer identify from network layer identity

● Connection translation
○ Intercepts packets in the network layer and translates the internal

addresses in the packet headers to or from the external
addresses for outgoing/incoming packets

● Connection migration
○ Coordinates the moving of server associated with active

connections to another IP address

Roadmap
● Introduction
● Threat Model
● System Architecture
● Implementation
● Security Analysis
● Performance Evaluation
● Conclusion

14

VM-based implementation

15

● Host configuration
○ Ubuntu 14.04 and

KVM
○ Intel Core i7-4712HQ

CPU, 16GB RAM
● Five VMs: decoy bed, real

server, AS, client, attacker
○ Each VM allocated

one host CPU and
2GB memory

○ Decoy VM runs
Ubuntu 12.04

○ Remaining VMs run
Fedora 15 with Linux
kernel 2.6.38

Three-level decoy bed

16

● Virtual machine level
○ Virtual machines with fully functional OS and

applications

● Operating system level
○ Containers deployed using LXC in Honeybed VM

● Process level
○ Honeyd deployed in containers

Seamless connection migration

17

● Connection interception
○ Intercept system calls for connection setup from the application

layer to transport layer
○ For TCP connection, socket, accept, connect, close,

getsockname, getpeername
○ For UDP connection, send/recv

● Connection translation - Use iptables to do NAT
○ Client side: DNAT on OUTPUT chain, SNAT on POSTROUTING

chain
○ Server side: DNAT on PREROUTING chain, SNAT on INPUT

chain
○ Use mangle table to block connection attempt to internal

addresses

Seamless connection migration

18

● Connection migration
○ Use two daemons within both endpoints to negotiate

with each other the migration based on a predefined
protocol
i. Suspend the connection
ii. Restore after IP randomization is finished; create a VIF to which the

internal connection is attached

○ Synchronously randomize the communication ports
○ Encrypt the negotiation messages with a shared secret

key

Roadmap
● Introduction
● Threat Model
● System Architecture
● Implementation
● Security Analysis
● Performance Evaluation
● Conclusion

19

Scanning unaware of IP randomization defense

● Static IP address layout, no need to scan a single IP twice
○ Sampling without replacement problem
○ Expected number of probes to identify real server in a n IP pool:

(n+1)/2

● Randomize the IP space after each probe. If the attacker
takes a single-round scan, the expected number of probes
is (1-1/e)n = 0.63n

● Attacker needs to pay 26% more efforts to locate the real
server

20

Scanning aware of IP randomization defense

● Identifying the target server IP can be treated as a
sampling with replacement problem
○ No matter whether the IP space is periodically re-randomized or not

● The number of probes m performed is a geometric random
variable with probability p=1/n

● Therefore, the expected number of probes is 1/p=n

21

Roadmap
● Introduction
● Threat Model
● System Architecture
● Implementation
● Security Analysis
● Performance Evaluation
● Conclusion

22

Microbenchmark - delay overhead

23

● Use sftp,
ftps, tftp
to transfer
1GB file

● sftp/ftps:
1% - 9%
overhead

● tftp: 5% -
15% overhead

System Overhead
● Use Netperf to measure migration related overhead in

terms of network latency and throughput
● Three configurations

○ Vanilla - a stock Linux with Netfilter firewall rules loaded on boot
○ Vanilla+Virt - system with both Netfilter and migration module

loaded, where the connections are not migrated but the socket
system calls are intercepted

○ Migration - with both Netfilter and migration module loaded and
all connections are migrated

24

System overhead

25

● Vanilla+Virt - connection interception incurs no overhead
● Migration - 2% to 7% overhead - incurred by connection translation

System Scalability

26

Connection migration overhead breakdown

● Average time to suspend a connection: 14 ms; to restore: 35 ms
● Virtual interface accounts for 90% of memory consumption, 1.06 KB each
● 5 MB memory overhead when migrating 5000 connections

Roadmap
● Introduction
● Threat Model
● System Architecture
● Implementation
● Security Analysis
● Performance Evaluation
● Conclusion

27

Conclusion
● We propose a defense framework for constructing a dynamically

mutable network with a number of decoys to protect the real servers
against scanning attacks

● Our solution can ensure seamless connection migration with IP
address randomization and guarantee both service availability and
service security of the real servers

● We implement a VM-based prototype, which shows that our system
has good scalability and acceptable network and system performance
overhead

28

