PatchDB: A Large-Scale Security Patch Dataset

<u>Xinda Wang</u>*, <u>Shu Wang</u>*, Pengbin Feng, Kun Sun, Sushil Jajodia Center for Secure Information Systems, George Mason University

* The first two authors contributed equally to this work.

Background & Motivation

A security patch embeds both vulnerable code and corresponding fix.

- > Vulnerability detection
- > Patch presence testing

Existing open-source patch datasets have several limitations:

- Small: collected from one or few projects
- **Biased**: collected from specific type of projects
- Noisy: security patches labelled as non-security ones

To enable patch/vulnerability related research, we construct a new patch dataset called *PatchDB* consisting of three parts:

To enable patch/vulnerability related research, we construct a new patch dataset called *PatchDB* consisting of three parts:

• Part I: NVD-based dataset

Overview of PatchDB construction.

To enable patch/vulnerability related research, we construct a new patch dataset called *PatchDB* consisting of three parts:

- Part I: NVD-based dataset
- Part II: Wild-based dataset

Overview of PatchDB construction.

To enable patch/vulnerability related research, we construct a new patch dataset called *PatchDB* consisting of three parts:

- Part I: NVD-based dataset
- Part II: Wild-based dataset
- Part III: Synthetic dataset

Overview of PatchDB construction.

Part I: Extracting Security Patches from NVD

For each CVE entry, we download its security patch from the Git hyperlink labelled as "Patch" and collect 4K samples.

Rationale: 8% GitHub commits are security patches without a CVE-ID, providing a source for augmenting security patch dataset.

(1) Locate candidates.

Goal: to locate the most promising candidates.

Approach: for each sample in existing security patch dataset, we search and verify its nearest neighbor from the wild (i.e., GitHub).

Goal: to locate the most promising candidates.

Approach: for each sample in existing security patch dataset, we search and verify its nearest neighbor from the wild (i.e., GitHub).

security patch

Goal: to locate the most promising candidates.

Approach: for each sample in existing security patch dataset, we search and verify its nearest neighbor from the wild (i.e., GitHub).

Goal: to locate the most promising candidates.

Approach: for each sample in existing security patch dataset, we search and verify its nearest neighbor from the wild (i.e., GitHub).

Part III: Synthesizing Artificial Patches

Rationale: around 70% security patches add/update sanity checks ^[1].

Strategy: adding variances on IF statements

Evaluation

We aim to answer five questions:

- 1. How to construct the wild-based security patch dataset using the nearest link search approach?
- 2. What is the performance of the nearest link search compared with existing methods?
- 3. Can synthetic security patches really help?
- 4. What is the composition of our PatchDB?
- 5. What is the quality of PatchDB?

Q1: Wild-Based Dataset Construction

Search range: 200K randomly selected commits from 300+ popular C/C++ GitHub projects

Ratio of security patches: up to ~30% after verification

Observation: ratio increases along with a larger search range

Results: 8K security and 24K non-security samples

Q2: Effectiveness of Nearest Link Search

Our nearest link search outperforms other three augmentation methods:

- *Brute force search*: directly screening security patches from the wild.
- *Pseudo labeling*: locating candidates from prediction results of single machine learning model (Random Forest) with the highest confidence.
- Uncertainty-based labeling: locating candidates from prediction results of multiple machine learning classifiers with the highest certainty (i.e., consensus)

Methods	% of Security Patches
Brute Force Search	8%
Pseudo Labeling	13%
Uncertainty-Based Labeling	12%
Nearest Link Search (Ours)	29%

Q3: Effectiveness of Synthesized Patches

Synthesizing patches is effective in the security patch identification task with a small dataset (i.e., the NVD-based dataset).

Dataset	Synthetic Dataset	Precision	Recall
NVD	-	82.1%	84.8%
NVD	17K Sec. + 20K NonSec.	86.0% (+3.9 %)	87.2% (+ 2.4%)
NVD+Wild	-	92.9%	61.1%
NVD+Wild	58K Sec. + 129K NonSec.	93.0% (+0.1%)	61.2% (+0.1%)

Performance w/o or w/ synthetic patches.

Q4: Distribution after Augmentation

We observe dissimilar distribution between wild-based dataset identified by the nearest link search and NVD-based dataset.

Benefit: introduce more varieties

ID	Type of patch pattern
1	add or change bound checks
2	add or change null checks
3	add or change other sanity checks
4	change variable definitions
5	change variable values
6	change function declarations
7	change function parameters
8	add or change function calls
9	add or change jump statements
10	move statements without modification
11	add or change functions (redesign)
12	others

Q5: Performance Improvement using PatchDB

In the task of automatic security patch identification, models trained with both the NVD-based dataset and the wild-based dataset have *better generalization ability*.

Training Dataset	Algorithm	Test Dataset	Precision	Recall
NVD	Random Forest	NVD	58.4%	21.7%
		Wild	58.0%	19.5%
	RNN	NVD	82.8%	83.2%
		Wild	88.3%	24.2%
NVD+Wild	Random Forest	NVD	90.1%	22.5%
		Wild	91.8%	44.6%
	RNN	NVD	92.8%	60.2%
		Wild	92.3%	63.2%

Impacts of datasets over learning-based models.

Conclusion

- We present the PatchDB:
 - > a *large-scale* dataset that contains 12K security patches
 - cover various types in terms of code changes
 - contain a *cleaned* non-security patch dataset of 23K samples
 - provide a synthetic dataset generated from real-world samples
- Use cases:
 - > Detecting vulnerability/patch presence
 - > Automatically generating patches
 - Compiling to binary dataset

Thank you!

Authors: Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, Sushil Jajodia

Questions? Our Emails: xwang44@gmu.edu, swang47@gmu.edu

Dataset can be accessed at: https://github.com/SunLab-GMU/PatchDB

