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Background & Motivation

A security patch embeds both vulnerable code and corresponding fix.
> Vulnerability detection
> Patch presence testing

Existing open-source patch datasets have several limitations:
e Small: collected from one or few projects
® Biased: collected from specific type of projects
® Noisy: security patches labelled as non-security ones
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Our Work

To enable patch/vulnerability related research, we construct a new
patch dataset called PatchDB consisting of three parts:

e Partl: NVD-based dataset
e Partll: Wild-based dataset
e Part lll: Synthetic dataset
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Part I: Extracting Security Patches from NVD

For each CVE entry, we download its security patch from the Git
hyperlink labelled as “Patch” and collect 4K samples.

http://www.securityfocus.com/bid/93271
VDB Entry

vendor Advisory

https://github.com/ImageMagick/ImageMagick/commit/90406972f108c4da71f998601b06abdc2acH

AXCVE-2016-7906 Detail

From 90406972£108c4da71£998601b06abdc2ac6f06e Mon Sep 17 00:00:00 2001
From: Cristy <urban-warrior@imagemagick.org>

Date: Sat, 1 Oct 2016 11:18:08 -0400

Subject: [PATCH] https://github.com/ImageMagick/ImageMagick/issues/281

MagickCore/attribute.c | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/MagickCore/attribute.c b/MagickCore/attribute.c
index d9f088ad75..£6510b7b£f3 100644
--- a/MagickCore/attribute.c
+++ b/MagickCore/attribute.c
@@ -1264,7 +1264,7 @@ MagickExport MagickBooleanType SetImageType(Image
*image,const ImageType type,
status=QuantizeImage(quantize_info,image,exception);
quantize_info=DestroyQuantizeInfo(quantize info);
}
- image->colors=2;
+ status=AcquireImageColormap(image,2,exception);
image->alpha_trait=UndefinedPixelTrait;
break;
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Part Il: Augmenting via Nearest Link Search

Rationale: 8% GitHub commits are security patches without a CVE-ID,
providing a source for augmenting security patch dataset.

(1) Locate candidates.
GitHub Patches (?) 1) GitHub Patches (?) (2) Verify security patches.
Candidates (?) |- ---- (3) Loop judgement.
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Nearest Link Search

Goal: to locate the most promising candidates.

Approach: for each sample in existing security patch dataset, we search
and verify its nearest neighbor from the wild (i.e., GitHub).
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Part Ill: Synthesizing Artificial Patches

Rationale: around 70% security patches add/update sanity checks X/,

Strategy: adding variances on IF statements
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[1] Zhao, Lei, et al. "Patchscope: Memory object centric patch diffing." CCS 2020.



Evaluation

We aim to answer five questions:

1. How to construct the wild-based security patch dataset using the nearest

link search approach?

2. What is the performance of the nearest link search compared with

existing methods?
3. Can synthetic security patches really help?
4. What is the composition of our PatchDB?
5. What is the quality of PatchDB?



Q1: Wild-Based Dataset Construction

Search range: 200K randomly selected commits from 300+ popular
C/C++ GitHub projects

Ratio of security patches: up to ~30% after verification
Observation: ratio increases along with a larger search range

Results: 8K security and 24K non-security samples
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Q2: Effectiveness of Nearest Link Search

Our nearest link search outperforms other three augmentation methods:

® Brute force search: directly screening security patches from the wild.

® Pseudo labeling: locating candidates from prediction results of single machine
learning model (Random Forest) with the highest confidence.

® Uncertainty-based labeling: locating candidates from prediction results of
multiple machine learning classifiers with the highest certainty (i.e., consensus)

Methods % of Security Patches
Brute Force Search 8%
Pseudo Labeling 13%
Uncertainty-Based Labeling 12%
Nearest Link Search (Ours) 29%
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Q3: Effectiveness of Synthesized Patches

Synthesizing patches is effective in the security patch identification task
with a small dataset (i.e., the NVD-based dataset).

Performance w/o or w/ synthetic patches.

Dataset Synthetic Dataset Precision Recall

NVD - 82.1% 84.8%
NVD 17K Sec. + 20K NonSec. | 86.0% (+3.9%) | 87.2% (+2.4%)

NVD+Wild - 92.9% 61.1%
NVD+Wild | 58K Sec. + 129K NonSec. | 93.0% (+0.1%) | 61.2% (+0.1%)

Sec. = security patch;  NonSec. = non-security patch
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Q4: Distribution after Augmentation

We observe dissimilar distribution between wild-based dataset
identified by the nearest link search and NVD-based dataset.

> Benefit: introduce more varieties
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add or change bound checks

add or change null checks

add or change other sanity checks
change variable definitions

change variable values

change function declarations
change function parameters

add or change function calls

add or change jump statements
move statements without modification
add or change functions (redesign)
others
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Q5: Performance Improvement using PatchDB

In the task of automatic security patch identification, models trained
with both the NVD-based dataset and the wild-based dataset have
better generalization ability.

Impacts of datasets over learning-based models.

Training Dataset Algorithm Test Dataset | Precision | Recall
NVD 584% | 21.7%

D Random Forest Wild 58.0% | 19.5%
— NVD 828% | 83.2%

Wild 883% | 24.2%

NVD 90.1% | 22.5%

VD Wil Random Forest Wild 018% | 44.6%

1 ANN NVD 928% | 60.2%

Wild 923% | 63.2%




Conclusion

e We present the PatchDB:

> alarge-scale dataset that contains 12K security patches
> cover various types in terms of code changes

> contain a cleaned non-security patch dataset of 23K samples
> provide a synthetic dataset generated from real-world samples

® Use cases:
> Detecting vulnerability/patch presence
> Automatically generating patches
> Compiling to binary dataset
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Thank you!

Authors:
Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, Sushil Jajodia

Questions?
Our Emails: xwang44@amu.edu, swang4/@agmu.edu

Dataset can be accessed at:
https://qgithub.com/SunlLab-GMU/PatchDB
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