
PatchDB: 
A Large-Scale Security Patch Dataset

Xinda Wang*, Shu Wang*, Pengbin Feng, Kun Sun, Sushil Jajodia

Center for Secure Information Systems, George Mason University

* The first two authors contributed equally to this work.



Background & Motivation

A security patch embeds both vulnerable code and corresponding fix.
➢ Vulnerability detection

➢ Patch presence testing

Existing open-source patch datasets have several limitations:
● Small: collected from one or few projects

● Biased: collected from specific type of projects

● Noisy: security patches labelled as non-security ones

2



Our Work

To enable patch/vulnerability related research, we construct a new 

patch dataset called PatchDB consisting of three parts:

3



Our Work

To enable patch/vulnerability related research, we construct a new 

patch dataset called PatchDB consisting of three parts:

● Part I: NVD-based dataset

4
Overview of PatchDB construction.



Our Work

To enable patch/vulnerability related research, we construct a new 

patch dataset called PatchDB consisting of three parts:

● Part I: NVD-based dataset

● Part II: Wild-based dataset

4
Overview of PatchDB construction.



Our Work

To enable patch/vulnerability related research, we construct a new 

patch dataset called PatchDB consisting of three parts:

● Part I: NVD-based dataset

● Part II: Wild-based dataset

● Part III: Synthetic dataset

4
Overview of PatchDB construction.



Part I: Extracting Security Patches from NVD

For each CVE entry, we download its security patch from the Git 
hyperlink labelled as “Patch” and collect 4K samples.

5



Part II: Augmenting via Nearest Link Search

Rationale: 8% GitHub commits are security patches without a CVE-ID, 
providing a source for augmenting security patch dataset.

6



Part II: Augmenting via Nearest Link Search

Rationale: 8% GitHub commits are security patches without a CVE-ID, 
providing a source for augmenting security patch dataset.

6



Part II: Augmenting via Nearest Link Search

Rationale: 8% GitHub commits are security patches without a CVE-ID, 
providing a source for augmenting security patch dataset.

6



Part II: Augmenting via Nearest Link Search

Rationale: 8% GitHub commits are security patches without a CVE-ID, 
providing a source for augmenting security patch dataset.

6



Part II: Augmenting via Nearest Link Search

Rationale: 8% GitHub commits are security patches without a CVE-ID, 
providing a source for augmenting security patch dataset.

6



Part II: Augmenting via Nearest Link Search

Rationale: 8% GitHub commits are security patches without a CVE-ID, 
providing a source for augmenting security patch dataset.

6



Nearest Link Search 

Goal: to locate the most promising candidates. 

Approach: for each sample in existing security patch dataset, we search 
and verify its nearest neighbor from the wild (i.e., GitHub).

7



Nearest Link Search 

Goal: to locate the most promising candidates. 

Approach: for each sample in existing security patch dataset, we search 
and verify its nearest neighbor from the wild (i.e., GitHub).

7



Nearest Link Search 

Goal: to locate the most promising candidates. 

Approach: for each sample in existing security patch dataset, we search 
and verify its nearest neighbor from the wild (i.e., GitHub).

7



Nearest Link Search 

Goal: to locate the most promising candidates. 

Approach: for each sample in existing security patch dataset, we search 
and verify its nearest neighbor from the wild (i.e., GitHub).

7



Part III: Synthesizing Artificial Patches
Rationale: around 70% security patches add/update sanity checks [1].

Strategy: adding variances on IF statements

8
[1] Zhao, Lei, et al. "Patchscope: Memory object centric patch diffing." CCS 2020.



Evaluation

We aim to answer five questions:

1. How to construct the wild-based security patch dataset using the nearest 

link search approach?

2. What is the performance of the nearest link search compared with 

existing methods?

3. Can synthetic security patches really help? 

4. What is the composition of our PatchDB?

5. What is the quality of PatchDB?

9



Q1: Wild-Based Dataset Construction

Search range: 200K randomly selected commits from 300+ popular 

C/C++ GitHub projects

Ratio of security patches: up to ~30% after verification

Observation: ratio increases along with a larger search range

Results: 8K security and 24K non-security samples

20



Q2: Effectiveness of Nearest Link Search

Our nearest link search outperforms other three augmentation methods:

● Brute force search: directly screening security patches from the wild.

● Pseudo labeling: locating candidates from prediction results of single machine 
learning model (Random Forest) with the highest confidence.

● Uncertainty-based labeling: locating candidates from prediction results of 
multiple machine learning classifiers with the highest certainty (i.e., consensus)

21

Methods % of Security Patches

Brute Force Search 8%

Pseudo Labeling 13%

Uncertainty-Based Labeling 12%

Nearest Link Search (Ours) 29%



Q3: Effectiveness of Synthesized Patches

Synthesizing patches is effective in the security patch identification task 

with a small dataset (i.e., the NVD-based dataset).

22

Performance w/o or w/ synthetic patches.



Q4: Distribution after Augmentation

We observe dissimilar distribution between wild-based dataset 
identified by the nearest link search and NVD-based dataset.

➢ Benefit: introduce more varieties

23



Q5: Performance Improvement using PatchDB

In the task of automatic security patch identification, models trained 

with both the NVD-based dataset and the wild-based dataset have 

better generalization ability.

24

Impacts of datasets over learning-based models.



Conclusion
● We present the PatchDB:

➢ a large-scale dataset that contains 12K security patches 
➢ cover various types in terms of code changes

➢ contain a cleaned non-security patch dataset of 23K samples

➢ provide a synthetic dataset generated from real-world samples

● Use cases:
➢ Detecting vulnerability/patch presence

➢ Automatically generating patches

➢ Compiling to binary dataset

25



26

Thank you!

Authors: 
Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, Sushil Jajodia

Questions?
Our Emails: xwang44@gmu.edu, swang47@gmu.edu

Dataset can be accessed at:
https://github.com/SunLab-GMU/PatchDB

mailto:xwang44@gmu.edu
mailto:swang47@gmu.edu
https://github.com/SunLab-GMU/PatchDB

